

Due to this minimal variation, we can say that all the haziness and the blurriness is completely gone.Ĭheck Out: BSc Physics Diffused Reflection As it is coated, the surface totally reflects all the light which falls on it i.e, there is not much variation in both the angles of reflection at multiple points. This mirror used for reflection of light is not the regular mirror we see around us, rather it is a glass which is heavily coated with a uniform layer of highly reflective material such as a powder. Regular Reflection can also be referred to as Specular Reflection and is simply understood by using a plane mirror. Following are the main three types of reflection:Īlso Read: Class 12 Physics Chapters Regular Reflection Whenever we change the basic elements or the form of basic elements involved in this phenomenon, the result also varies. While exploring the basics of the reflection of light, it is also important to go through the different types of reflection.

In order to follow the quickest path through a system, a ray changes direction as it travels from a medium of one refractive index to another medium that has a different refractive index.Quick Read: Experiment With Diverse Career in Physics Types of Reflection Predicts how the ray will change direction as it passes from one medium into another, or as it is reflected from the interface between two media. The angles in this equation are referenced to a surface normal, as is illustrated below. In the following figure, a ray is incident on an interface between two dissimilar media. A plane that includes the incident ray and a line drawn normal to the surface is called the plane of incidence. This plane also contains the reflected and refracted rays.

A refracted ray is transmitted into the second medium and travels in a different direction than the incident ray. The angle that the incident, reflected, and refracted rays make with the surface normal are called the angles of incidence, qi, reflection, qr, and refraction, qt, respectively. The refractive index of medium 1 is n1 and of medium 2 is n2. In the case of the transmitted, or refracted, ray, N1 Sinθ i = n1 Sinθ r, which is the same as Sinθ i = Sinθ r.įrom this, it is easy to see that the angle of incidence and the angle of reflection are the same! In the case of a reflected ray, nA = nB = n2 = n1, Illustration of incident, reflected, and refracted rays. If n1n2, then the angle of refraction is larger than the angle of incidence…when there is an angle of refraction! Imagine the angle of incidence getting larger and larger for the case of n1>n2. Eventually the refracted ray will make an angle of 90° with the surface normal. If the angle of incidence is increased beyond that angle, then refraction does not occur! All of the light incident on the interface is reflected back into the incident medium! The smallest angle of incidence at which total internal reflection occurs is called the critical angle, qc. These diagrams illustrate two different cases of refraction. Total internal refraction is depicted in the sketch on the right. Many devices take advantage of the total internal reflection, including optical waveguides (like optical fiber). A waveguide is a length of transparent material that is surrounded by material that has a lower index of refraction. Rays can be trapped in a waveguide through total internal reflection."Reflection is a change in direction of a wave upon striking the interface between two materials."( #1.) Rays that intersect the interface between the waveguide material and the surrounding material at angles equal to or larger than the critical angle are trapped in the waveguide and travel losslessly along it. Meaning When a ray of light strikes a plane mirror, the light ray reflects off the mirror.

Reflection involves a change in direction of the light ray. The convention used to express the direction of a light ray is to indicate the angle which the light ray makes with a normal line drawn to the surface of the mirror. The angle of incidence is the angle between this normal line and the incident ray the angle of reflection is the angle between this normal line and the reflected ray. According to the law of reflection, the angle of incidence equals the angle of reflection. These concepts are illustrated in image 1. In image 2, the ray of light approaching the mirror is known as the incident ray (labeled I in the diagram).
